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structure with a lapse rate smaller than the adiabatic 
rate has a stabilizing effect on very short waves, and that 
non-geostrophic effects are important in this region. Any 
results which we may derive from a quasi-geostrophic 
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ABSTRACT 

The quasi-geostrophic, baroclinic stability problem is solved for an arbitrary zonal wind profile U= U ( p )  and 
for an  adiabatic lapse rate. It is shown that the phase spced of the waves in this case depends on the vertical in- 
tegrals of U and U2. Duc to  the assumption of an adiabatic stratification there is no short wave cutoff, but the effect 
of thc variation of the Coriolis parameter will in all cases give stability for sufficiently long waves. 

A numbcr of numerical examples show that the region of instability, in a coordinate system with wavelength 
as abscissa and wind shear as ordinate, is the largest when thc wind maximum is situated in the upper part of the 
atmosphere, and when the curvature of the zonal wind profile a t  the wind maximum has an intermediate value. 

1. INTRODUCTION 
Any solution of the baroclinic instability problem 

(Charney [2], Kuo [7]) has normally involved the assump- 
tion that the variation of the basic zonal wind with 
height or pressure is linear. Such assumptions have clearly 
been introduced for mathematical convenience. The gen- 
eral baroclinic instability problem can not be solved in 
closed analytical form for an arbitrary variation of the 
zonal wind with height. Some insight into the importance 
of t'he wind profile for the degree of instability has been 
obtained by Haltiner [6] using numerical methods. 
A4nother approach was used by Pedlosky [8] who found 
the changes in stability as a function of t'he velocity 
profile. He considered small arbitrary deviations from a 
uniform vertical wind shear. The starting point is Eady's 
[4] model, which considers the stability to  quasi-geo- 
strophic disturbances with a uniform vert'ical wind shear. 
In addition the Coriolis parameter is assumed constant. 
I t  is well known that one of the major effects of the 
variation of the Coriolis paramet,er with latitude (t'he 
p-effect) is to stabilize the very Ion, 0' waves. 

A disadvantage of the numerical approach is that the 
phase velocity' is not expressed explicitly in terms of the 
meteorological parameters entering the problem. The 
approach used by Pedlosky [SI requires t,hat the deviations 
from a linear profile with respect to height. are sma.11. 
I t  is therefore of interest to consider still another approach 
to the problem. Considerable insight into. the baroclinic 
stability problem was gained by considering a basic state 
with an adiabatic lapse rate (Pjgrtoft [5]). Assuming that 
the variation of the zonal wind with height is linear, one 
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- b W  ( )+" . v ($)+; w = 0  
dt ?$ 

where A is an integration constant. (2.8) can be inte- 
(2.2) grated directly to give 

O = A c  E(E-c,)dp, (2.9) 

purely baroclinic problem. The perturbations may be i' E(E-cR)dp,=O. (2.10) 

in which {=V+ is the relative vorticity, + the stream 
 function, v the horizontal, non-divergent wind, o the 
vertical' velocity, f the Coriolis parameter, fo a standard 
value, u= -(a/@ (dO/dp) a measure of static stability, Q! 

the specific volume and 8 the potential temperature. 
The basic state is defined by a zonal wind U= U ( p )  and 

a static stability a=cT(p) when we want to consider the 

expressed in the form i 

+'(x, p ,  t )=q(p)eik(z-c ' )  

~'(x, p ,  t ) =  Q(p)e*k(z -cr )  

which is the general solution to (2.6). 
The eigenvalue e, the phase speed, is determined from 

the boundary condition that fl=o for P*= 1. We get 
therefore 

(2.3) 

(2.4) phase speed : 

When we introduce E=U-c in (2.10) and carry out 
the integrations we get the following equations for the 

in which we have neglected the dependence on the 
meridional coordinate. 

When we linearize equations (2.1) and (2.21, introduce 
(2.3) and (2.4) in the linearized equations, and eliminate 

following equations for O=O(p)  : 

in which Il and I, are notations for the integrals: 

1 Q = q ( p )  from the resulting equations we obtain the II=J Udp,  (2.12) 

and 

in which me have introduced cR=/31k2 and the non- 
dimensional independent variable p ,  =p/po, where p ,  is a 
standard \.slue of the surface pressure (po= 100 cb.). 
Equation (2.5) together with boundary conditions : O=O 
for p ,  = O  and p ,  = 1 constitutes the general eigenvalue 
problem for D and the phase speed e. 

The eigenvalue problem as stated above is very difficult 
l o  solve for an arbitrary specification of U=U(p, )  and 
u=T(p , ) .  Solutions to (2 .5)  have been obtained in several 
special cases all of which include the assumption that U is 
it linear. function of p .  For a summary of these solutions 
the reader is referred to Derome and Wiin-Nielsen [3]. 
It is the purpose of this section to show that a complete 
solution can be obtained in the special case in which F=O. 
This case corresponds to an adiabatic lapse rate as can be 
seen from the definition of u given above. When Z=O me 
obtain the following equation: 

- 
- 

in which E= E ( p )  = U- e. 
We note that (2.6) can be written in the form: 

(2.13) 

We obtain an important conclusion directly from (2.11). 
It is seen that the phase speed depends on the integrals 
(2.12) and (2.13), but not on the detailed structure of 
U=U(p*). We note furthermore that 1, is identical to 
the vertical average of U ( p * ) ,  while Iz is the vertical 
average of the function U2. For later use we note that the 
following inequality holds : 

I2 2 If. (2.14) 

The relation (2.14) is a special case of Schwartz's in- 
equality, but the proof is easily obtained in this case by 
noting that we may write U in the form 

U= I1 + U' (2.15) 

where I, is the vertical mean value and U' is the deviation 
from this mean value. We note, in particular, that 
f AU'dp,=O. Using (2.15), we obtain 

I2 = so1 (I;+ U' '4- 21,U' ) dp,  =I; 4- f i " d p ,  (2.16) 

from which we obtain (2.14). It is seen that the equality 
sign holds only when U'=O everywhere, i.e. when 
U= constan t. 

From (2.7) we find that 
It is seen from (2.17) that if we neglect the &effect, - 

i.e. eR=O, there will always be unstable waves because of 
(2.14). They will move with the speed I, while the imagi- (2*8) 



November 1967 A. Wiin-Nielsen 735 

nary part of the phase speed will be C ~ = ( I ~ - I ~ ) ~ / ~ .  
Equation (2.17) shows clearly the stabilizing effect of C 
on the very long waves. For a sufficiently small wave 
number cR will be so large that the radicand in (2.17) will 
become positive giving stability. The general nature of 
the stability diagram obtained for the case when U is a 
linear function of p ,  is therefore unchanged, although 
there will be changes in details. 

It should be pointed out that (2.17) can be written in 
the form 

(2.15) 
where 

c= (11 - 3 C R )  & y'; & -1, 
1 

13=12-1:=1 Uf2dp, .  (2.19) 

The last expression in (2.19) is obtained by the use of 
(2.16). It appears therefore that I3 is the important in- 
tegral for the determination of the imaginary part of the 
phase speed, while 1, determines the real part. The baro- 
clinic instability in the present model is therefore de- 
termined by the square of the variance of the zonal flow 
from its vertical mean value I,. 

The general solution given in (2.17) and (2.15) can be 
compared with other models for which we have a com- 
plete solution. The comparison will be made with the 
well-known stability analysis of the quasi-geostrophic, 
two-level model as given for example by Thompson [9]. 
He finds 

where 
1 M4 p 2 - k 2  D=- c2 R----UT-2'-- 

(k2+ 1.1')' 1.1 + k 2  

(2.20) 

(2.21) 

in which g= f i  ( Ul f U3) and UT= f h  ( Ul - U,) , where 
subscripts 1 and 3 refer to the 250-mb. and 750-mb. levels, 
respectively. p 2  is a parameter which is inversely propor- 
tional to the static stability IJ. When p2-+m,  which corre- 
sponds to the two-level analogue of the model investigated 
in this paper, we find 

(2.22) 

is the vertical mean of the basic flow and corresponds 
therefore to I,. U:, on the other hand, is closely related to 
I,. If we for example assume that the zonal wind in the 
two-level model varies linearly with pressure we find 

u= ?7+2UU,(1-22p,) (2.23) 

from which it follows that 13=(4/3)U;. If we on the 
other hand assume that the zonal mind in the layer 0 to 50 
cb. is constant and equal t,o U1, while the wind in the 
layer 50 t o  100 cb. is constant and equal to Us,  we find 
that 13=U:. It is in any case evident that the stability 
analysis of the two-level model corresponds very closely 
to  our general result when pz+ m . 

The advantage of the comparison is that it seems likely 
that the zonal mind profile which gives the greatest region 

of instability in our model would also be the most unstable 
in a model with a stratification different from the adiabatic 
situation employed here. 

3. SOME NUMERICAL EXAMPLES 
In this section we shall investigate various classes of 

mind profiles in order to find how the stability properties 
change as a function of the profile. 

The first example will be selected in such a way that we 
may investigate the importance of the position of the wind 
maximum. For this purpose lve have selected a function 
u= U(p*) as follows: 

By differentiation with respect to  p ,  we find that 
dU/dp,  =O if p ,  = 1 and p ,  = (q+ l ) - l .  Selecting the second 
of these values we find that the maximum value of U is: 

If we therefore select B to have the value 

B = ( p + 1 ) c+1/qq (3.3) 

we find that Urn,,= U,. The non-dimensional pressure for 
which the maximum occurs is 

and it is therefore seen that large values of p imply a wind 
maximum for a small value of p,. Figure 1 shows the wind 
profiles U/U,  as a function of p ,  for various values of p. 

In investigating the stability we shall be satisfied b y  
finding the critical curve which according to (2.17) is 
given by the expression 

I2-1?= :e;. (3 .5)  

The integrals 1, and Iz can be evaluated from the 
definitions by elementary integrations. We find : 

and 

When I I  and I 2  are substituted in (3.5), we can solve 
for U,. In  evaluating the formula me substitute 
cR=/3/k2=0.412, where 1 is the wavelength measured in 
106 m. and p= 16X lo-'' m.-I set.-' The value of U ,  is a 
measure of the wind shear in the lower part of the atmos- 
phere, but U ,  occurs a t  various pressures for different 
values of p. We define therefore a mind shear U, as follows: 

where p*,  17L is given by (3.4). Solving for U,, we get 
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P t  

u / u m  

I FIGURE 1.-The zonal wind as a function of pressure for various 
values of q based on equation (3.1). 

Us=Cq12 (3.9) 
in which 

I 
(3.10) 

and 

The critical curve is therefore in all cases a parabola in 
n diagram with I as abscissa and Us as ordinate. The 
region of instability is above the parabola. The coefficient 
C, is a measure of the region of instability. The first fern 
values of C, are given in table 1.  It is seen that the smaller 
values of p correspond to the larger values of C, and there- 
fore to a smaller region of instability. It is instructive to 
compare these results with the region of instability for a 
wind profile U= U,p, ( q = O )  or U= Urn( 1 -p*)  in 
which cases we find U,=0.68 1'. The linear wind profile 
has therefore about the same region of instability as the 
case q=4 in table 1. We note next that there is a minimum 
in C, around q=7 which indicates that the greatest region 
of instability occurs when the mind maximum is located 
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FIGURE 2.-Curves of neutral stability for various values of q 
in a. diagram with wavelength (loom.) as abscissa and the vertical 
wind shear, U.(m. sec.-l), as ordinate. 

around p,, ,=0.125, a result which may be modified 
if we were able to consider the influence of static stability. 
The regions of instability are given in figure 2 for selected 
values of p. We note in the figure that the curve q=5 for 
practical purposes is identical to the maximum region of 
instability. 

The wind profiles described by (3.1) will have the 
maximum wind at  a value of p ,  I %. From this point of 
view they approximate atmospheric conditions. One may, 
however, ask how the stability is changed if the maximum 
occurs a t  p,. 4;. This question can be answered by a 
consideration of the wind profiles : 

TABLE 1.-The coefficient C, as a function of q 



November 1967 A. Wiin-Nielsen 737 

By differentiation x7ith respect to p ,  it is found that the 
maximum is a t  p,,,=q/(q+l) and that the maximum 
value Urn,,= U ,  if D=(p+l)g+l/qQ. An evaluation of 
I ,  and J z  leads to the same values as given in (3.6) and 
(3.7). However, the value of Us as given by (3.8) is now 
U,=-(p+l)U, and equivalent to (3.9) we find now 

u,= 0;. 1 2  

where 
(3.13) 

(3.14) 

A comparison of (3.10) and (3.14) shows that 

c;= 4. c, * (3.15) 

Using the values of table 1 we find that the region of 
instability in :I diagram corresponding to figure 1 will be 
even smaller when we use (3.12) in place of (3.1). The 
first example tested the stability as a function of the 
position of the \\-ind maximum in the basic zonal current,. 
Tn our next example we shall keep the wind maximum at 
the same pressure level but vary the shape of t?.he profile. 
For this purpose we select the following wind profile 

(3.16) 

in which p ,  and 77, are constants. Differentiating (3.16) 
with respect to p, we obtain 

The zero points of (3.17) are p,=O and p,=l  if a 2  1 
and /32 1. An additional root is p ,=a / (~~+p) .  We want 
to select] CY and /3 in such a wa9 that the last root occurs 
for p ,  = p ,  which gives the following condition 

(3.1s) 

Let us select p,=% which means that the maximum 

The integrals 1, and l2 can be evaluated by repeated 
wind will be found a t  25 cb. We then get p=3a. 

integrations by parts. We find: 

and 

(3.20) (2a) ! (2P) ! 7Yk I -  2-(201+2p+l)! p Z ( 1  -prn)*R’ 

Substituting (3.19) and (3.20) in the equation (3.5) for 
the neutral curve, we find again an equation of the form 
(3.9),  but the coefficient is now given by the following 
expression 

cQ=0.2pz (1-prn)3a . S  (a ) - l r l  (3.21) 
278-472 0 - 67 - 3 

where 

* (3.22) 
( 2 4  ! (20) ! 

S (a)= 

Figure 3 shows the curves U/Vm computed from (3.16) 
with pm=% for a=l ,  2, an$ 3. It is seen that the larger 
values of a correspond to a sharper mind maximum. The 
stability of the zonal currents will be investigated and 
compared with the straight line profile described by 

0 <P* <Prn 

Using (3.23) we find Il=)(Urn and I,=%Uk. In this 
case we find the neutral curve to be Urn=O.4&l2, cor- 
responding to a value of CQ=0.6S. 

The coefficient C, given by (3.21) has been evaluated for 
p,=% and for a=], 2, 3, . . .> 10 in order to  find out if 
there is a profile in the class given by (3.16) which shows a 
larger area of instability. The results of this calculation 

P* 

0001 0 2  03 04 0 5  06 0 7  08 09 I O  
U / U m  

FIGURE 3.-The zoiial wind as a function of pressure for various 
values of 01 based on equation (3.12). The curves show 3 wind 
maximum at 25 cb. (p=3a . )  



738 MONTHLY WEATHER REVIEW Vol. 95, No. 11 

TABLE 2.-The coeficient C, as a function of (Y 

C, ( 0 . 5 5 ( 0 . 5 4 ( 0 . 5 6 ( 0 . 5 8 ( 0 . 5 9 ( 0 . 6 1 ( 0 . 6 2 ( 0 . 6 4 / 0 . 6 5 ~ 0 . 6 6  

are given in table 2 in which C, is given as a function of a. 
We notice from the table that the minimum value of C, 
occurs for a=2, which means that the maximum region of 
instability is found for this value. 

The main result from the first two examples is that the 
maximum region of instability is found when the wind 
maximum is located at  relatively low values of pressure 
(12.5 cb.), and when the profile has a well-defined maxi- 
mum, but not too sharp a peak. We may test the second 
part of" this tentative conclusion by considering a third 
example in which we consider a profile which is continuous, 
but where the first derivative with respect to pressure is 
discontinuous a t  the wind maximum. 

The zonal wind in the third example is given by the 
following expressions : 

A few representative wind profiles for various values 
of s are given in figure 4. It is seen that the larger values 
of s correspond to a larger discontinuity in dU/dp ,  at  
P,=Pm. 

Using (3.24), we may next calculate the integrals I, 
and I2 from (2.12) and (2.13), respectively. We find 

and 
11=U,/(s+ 1)  (3.25) 

12=U2/( 2s+ 1). (3.26) 

Equations (3.25) and (3.26) are substituted in (3.5), the 
equation for the neutral stability curve. After reduction 
we find that t,he equation for this curve is: 

urn=cs12 
in which 

c ,=0 .2  --- 
( 2 s A  (S+1l2 r2 

(3.27) 

In order to find the maximum region of instability we 
must find a minimum value of C, as a function of s. A 
straightforward differentiation of C, with respect to s leads 
to the result that C, has a minimum when s=)h(l+&) 
=1.618. The minimum value of C, is c,=0.666. The 
variation of C, as a function of s is given in table 3 (0 I s 5 1) 
and table 4 (1 I s _ <  10). The results listed in these tables 
confirm the tentative conclusion reached in our second 

TABLE 3.-The coejicient C ,  as a function of s (O<s<l) 

1 0 . 1  10.2 10.3 10.4  i o . j j o . 6  10.7 10.9 j 1 . 0  
C .  2.41 1.42 1.10 0.94 0.85 0.79 0.75 0.73 0.71 0.69 

TABLE 4.-The coeficient C ,  as a function of s (I <s<lO) 

_--__ s 1 1 1  2 1  3 j  4 1  5 1 . 6 1  7 1  8 1  9 1 1 0  __ 

C. 0.69 0.67 0.71 0.75 0.80 0.84 0.89 0.93 0.97 1.01 

example. The curve corresponding to s=2  in figure 4 is 
a close approximation of the curve (s= %(l+.&)) which 
has the largest region of instability. 

P* 

u/um 

FIGURE 4.-The zonal wind as a function of pressure for various 
values of s based on equation (3.20). 
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4. CONCLUDING REMARKS 
The main purpose of this paper is to investigate the 

influence of the shape of the zonal wind profile on the 
instability of atmospheric disturbances. In order to obtain 
a solution in closed form it has been necessary to use a 
quasi-geostrophic formulation and to make the additional 
assumption that tjhe temperature stratification is adiabatic. 
The latter assumption limits the applicability to long 
waves, but makes it possible to obtain a solution for an 
arbitrary wind profile U=U(p). This solution is in- 
vestigated in general and several numerical examples are 
given. The main conclusions are that the maximum region 
of instability is found when the wind maximum occurs 
in the higher parts of the atmosphere, and when the 
curvature a t  the wind maximum is of a moderate 
magnitude. 

REFERENCES 

1. G. ’Arnason, “The Stability of Non-G eostrophic Perturbations 
in a Baroclinic Zonal Flow,” Tellus, vol. 15, No. 3, Aug. 
1963, pp. 205-209. 

2.  J. G. Charney, “The Dynamics of Long Waves in a Baroclinic 
’ Westerly Current,” Journal of Meteorology, vol. 4, No. 5, 

3. J. F. Deromc and A. Wiin-Nielsen, “On the Baroclinic Stability 
of Zonal Flow in Simple Model Atmospheres,” Technical 
Report No. 2 (06372-ST), University of Michigan, Oct. 
1966, 93 pp. 

4. E. T. Eady, “Long Waves and Cyclone Waves,” Tellus, vol. 1, 
NO. 3, Aug. 1949, pp. 33-52. 

5 .  R. Fjflrtoft, “Application of Integral Theorems in Deriving 
Criteria of Stability for Laminar Flows and for the Baroclinic 
Circular Vortex,” Geofgsiske Publikasjoner, vol. 17, No. 6, 
Mar. 1950, pp. 1-52. 

6. G. J. Haltiner, “Finite Difference Approximations for the 
Determination of Dynamic Instability,” Tellus, vol. 15, 
No. 3, Aug. 1963, pp. 23C-240. 

7. H. L. Kuo, “Three-Dimensional Disturbances in a Baroclinic 
Zonal Current,” Journal of Meteorology, vol. 9, No. 4, Aug. 
1952, pp. 260-278. 

8. J. Pedlosky, “On the Stability of Baroclinic Flows as a Func- 
tional of the Velocity Profile,” Journal of Atmospheric Sciences, 
vol. 22, No. 2, Mar. 1965, pp. 137-145. 

9. P. D. Thompson, Numerical Weather Analysis and Prediction, 
Macmillan Company, New York, 1961, 170 pp. 

Oct. 1947, pp. 135-162. 

[Received June 26, 1967; revised August 17, 19671 

. .  


